Tetrahedron Letters 41 (2000) 1401-1403

Brassicolene, a novel cytotoxic diterpenoid from the Formosan soft coral *Nephthea brassica*

Chang-Yih Duh, a,* Shang-Kwei Wang b and Ying-Ling Weng a

^aDepartment of Marine Resources, National Sun Yat-sen University, Kaohsiung, Taiwan ^bDepartment of Microbiology, Kaohsiung Medical College, Kaohsiung, Taiwan

Received 19 October 1999; revised 29 November 1999; accepted 3 December 1999

Abstract

A novel cytotoxic diterpenoid, brassicolene (1), has been isolated from the soft coral *Nephthea brassica*. The structure of 1 (novel carbon skeleton) was determined by 1D and 2D spectral analysis. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: soft coral; Nephthea brassica; cytotoxic; diterpenoid; brassicolene.

In previous papers, 1,2 we reported a tetraterpene and a norditerpene with novel skeletons from Formosan soft corals *Sinularia flexibilis* and *S. inelegans*, respectively. In a continuing search for bioactive substances from marine organisms, the Formosan soft coral *Nephthea brassica* Kükenthal (Family Nephtheidae) was selected for study since its CH_2Cl_2 extracts showed significant cytotoxicity in several tumor cell lines as determined by standard procedures. Bioassay-guided fractionation resulted in the isolation of a novel cytotoxic diterpenoid, brassicolene (1), which was obtained as a colorless oil, $[\alpha]^{25}_D + 16.2$ (c 0.06, $CHCl_3$). Its UV absorption at λ_{max} (log ε) 226 nm (4.16) exhibited the presence of a conjugated diene. Analysis of HREIMS revealed a molecular formula of $C_{22}H_{32}O_2$ [M⁺ m/z 328.2390 (Δ –1.2 mmu)], which indicated seven degrees of unsaturation. Its IR spectrum (KBr) suggested the presence of an ester carbonyl group (1726 cm⁻¹).

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)02302-3

^{*} Corresponding author. Fax: 886 7 525 5020; e-mail: yihduh@mail.nsysu.edu.tw (C.-Y. Duh)

Table 1

¹H and ¹³C NMR data of brassicolene (1) (400 and 100.6 MHz, respectively, in CDCl₃). The chemical shifts are given in ppm relative to TMS, and coupling constants (*J*) in Hz

pos.	δ н; mult.; J	δc;mult.	HMBC	COSY	NOESY
1	3.25; ddd; 13, 3, 0.6	46.4; d	3, 14, 15		18, 20
2	7.09; d; 0.6	137.5; d	3, 4, 18	18	5
2 3		153.5; s			
4		124.2; s			
5	2.57; m	23.1; t	4, 6		2, 18
6α	2.28; m	26.2; t	4, 5, 7, 8	5, 7	
6β	2.41; m				18
7	4.94; m	125.7; d	19	6	5, 6, 9, 10
8		134.4; s			
9	2.09; m	39.0; t	10		7, 9, 10
10	2.01; m	23.8; t		11	9, 11
11	4.42; m	125.5; d	10, 13, 20	10, 20	10, 13, 18
12		132.9; s			
13	1.88; m	37.4; t	11, 14	14	11
14α	1.67; m	23.9; t	13	1, 13	18
14β	1.83; m				1
15		84.1; s			
16	1.40; s	23.7; q	1, 15		1
17	1.42; s	24.8; q	1, 15		1
18	5.74; s	111.1; d	2, 3, 4	2	1, 5, 6β, 7, 14α, 19
19	1.57; s	15.4; q	7, 8, 9	7	18
20	1.50; s	14.7; q	11, 12, 13	11	1
OAc	1.97; s	22.5; q 170.4; s			

¹H and ¹³C NMR spectral data (Table 1) showed the structure of **1** contained an acetoxyisopropyl side chain (δ_C 24.8 q, 23.7 q, 84.1 s, 22.5 q, 170.4 s; δ_H 1.40, 1.42, 1.97, 3H each, s each), two isolated methyl-bearing trisubstituted double bonds ($\delta_{\rm H}$ 4.94 m, 4.42 m, 1.57 bs, 1.50 bs, 3H each; $\delta_{\rm C}$ 125.7 d, 134.4 s, 125.5 d, 132.9 s), a trisubstituted cyclopropene double bond ($\delta_{\rm H}$ 5.74, 1H, s; $\delta_{\rm C}$ 111.1 d, 124.2 s),⁵ a trisubstituted double bond ($\delta_{\rm H}$ 7.09, 1H, d, J=0.6 Hz; $\delta_{\rm C}$ 137.5 d, 153.5 s), one methine carbon $(\delta_C 46.4 \text{ d})$ and six methylene carbons $(\delta_C 23.1, 26.2, 39.0, 23.8, 37.4, 23.9)$. These data suggested that 1 may possess a bicyclo [12.1.0] pentadecane skeleton with functionalities of an acetoxyisopropyl, two isolated methyl-bearing trisubstituted double bonds, a cyclopropene, and a trisubstituted double bond conjugated with the cyclopropene double bond. The acetoxyisopropyl at C-1 was confirmed by HMBC correlations between H-1 to C-3, C-14 and C-15, H-16 to C-1 and C-15, and H-17 to C-1 and C-15. The vinyl methyl group at C-8 was confirmed by HMBC correlations between H-19 to C-7, C-8 and C-9 and H-7 to C-19. The other vinyl methyl group at C-12 was revealed by the HMBC correlations between H-11 to C-10, C-13 and C-20, and H-20 to C-11, C-12 and C-13. The acetoxyisopropyl and the methyl-bearing trisubstituted olefins were further connected by HMBC correlations as shown in Table 1. The position of the cyclopropene and its conjugated olefin was confirmed by HMBC correlations between H-1 to C-3, C-14 and C-15, H-2 to C-3, C-4 and C-18, and H-18 to C-2, C-3 and C-4. The α configuration of the acetoxyisopropyl at C-1 was determined by NOESY experiment, which showed correlations between H-1 and H-14β, 18 and 20. Brassicolene (1) exhibited cytotoxicity against A-549 and P-388 cell culture system with ED $_{50}$ of 3.62 and 0.86 μ g/ml, respectively.

Acknowledgements

We wish to thank Professor Chang-Feng Dai of the Institute of Oceanography, Taiwan National University, for identification of the soft coral sample. This work was supported by grants from the National Science Council of Taiwan.

References

- 1. Duh, C.-Y.; Wang, S.-K.; Tseng, H.-K.; Sheu, J.-H. Tetrahedron Lett. 1998, 39, 7121–7122.
- 2. Duh, C.-Y.; Wang, S.-K.; Chai, M.-C.; Chiang, M. Y. Tetrahedron Lett. 1999, 40, 6033–6035.
- 3. Geran, R. I.; Greenberg, N. H.; MacDonald, M. M.; Schumacher, A. M.; Abbott, B. J. Cancer Chemother. Rep. 1972, 3, 1–91
- 4. Hou, R.-S.; Duh, C.-Y.; Chiang, M. Y.; Lin, C.-N. J. Nat. Prod. 1995, 58, 1126–1130.
- 5. Günther, H.; Seel, H. Org. Magn. Resonance 1976, 8, 299–306.